Search results

Search for "dehydrogenation catalysis" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • ). Moreover, following our recent achievements in the field of steam- and oxygen-free dehydrogenation catalysis using CTFs as metal-free catalysts, the new samples with highest N contents have been scrutinized in the process to provide additional insights to their complex structure–activity relationship
  • . Keywords: covalent triazine frameworks; CO2 adsorption; CO2/N2 selectivity; dehydrogenation catalysis; ionothermal conditions; Introduction Recent years have witnessed an increasing interest in carbon-based nanomaterials as functional devices for energy-related applications [1]. Their unique properties
  • stability) as metal-free catalysts in gas-phase processes. Our recent achievements in the use of highly porous and N-rich carbon nanomaterials as metal-free catalysts for the steam- and oxygen-free dehydrogenation catalysis (DDH) of ethylbenzene (EB) to styrene (ST) have shown unique outcomes in terms of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019
Other Beilstein-Institut Open Science Activities